facebooktwittergoogle
Nezávislé informace o vědě a výzkumu
facebooktwittergoogle

Zdeněk Sofer se zabýval dvoudimenzionálními materiály a možnostmi jejich modifikací

22. 10. 2019
Zdeněk Sofer se zabýval dvoudimenzionálními materiály a možnostmi jejich modifikací

Zdeněk Sofer z Vysoké školy chemicko-technologické v Praze se v projektu oceněném Cenou předsedkyně GA ČR zabýval dvoudimenzionálními materiály a možnostmi jejich strukturních a chemických modifikací pomocí iontových svazků. Jeho týmu se v rámci projektu  podařilo syntetizovat absolutně čistý grafen bez přítomnosti jakýchkoliv kovových nečistot a tím prokázat jejich zásadní vliv na elekrokatalytické vlastnosti grafenu.

Zdeněk Sofer

Výsledky výzkumu byly publikovány v 55 impaktovaných časopisech jako například ACS Nano a Angewandte Chemie a měly mimořádný citační ohlas.

Interakce s vysokoenergetickými ionty vede k vytváření strukturních a chemických změn v ozařovaném materiálu. Například u folií na bázi oxidu grafenu dochází k rozkladu kyslíkatých funkčních skupin, což je doprovázeno výrazným zvýšením elektrické vodivosti. Použitím lokalizovaného ozařování tzv. iontové mikrosondy bylo možné vytvářet komplexní vodivé struktury na flexibilní nevodivé folii oxidu grafenu pro nejrůznější aplikace ve flexibilní elektronice.

„V rámci projektu jsme také řešili interakce iontových svazků s vrstevnatými chalkogenidy, kde byl pozorován nárůst katalytické aktivity v důsledku vzniku katalyticky aktivních defektů na povrchu materiálu. Při řešení projektu bylo syntetizováno množství nových derivátů grafenu i jiných dvoudimenzionálních materiálů,“ říká Zdeněk Sofer.

2D materiály, jako je například grafen, mají řadu unikátních vlastností. V jedné rovině mají silné kovalentní vazby, mezi jednotlivými rovinami jsou však velmi slabé elektrostatické interakce. Díky tomu je možné tyto materiály postupně ztenčovat.

„Krásným názorným příkladem 2D materiálu je například obyčejná slída, která má velmi pevné vazby v jednotlivých rovinách, ale tyto roviny je možné poměrně snadno od sebe oddělit a separovat. Když tento proces budeme opakovat mnohokrát, tak postupně dojdeme až na jednu atomární rovinu tohoto materiálu,“ popisuje Zdeněk Sofer. „Na rozdíl od slídy má ale grafen mnoho unikátních vlastností jako je například jeho elektrická vodivost nebo mechanická pevnost, která umožňuje, že grafen, který získáme na měděném substrátu depozičním zařízením, jsme pak schopni přenést na křemíkové substráty, aniž bychom tu monoatomární vrstvu v řádové velikosti jednotek centimetrů výrazným způsobem narušili.“

Tímto způsobem je možné získávat v podobě monovrstev velké množství dalších materiálů, které na rozdíl od grafenu mohou být izolátory nebo polovodiče s širokým zakázaným pásmem. Jejich aplikace pak mohou sloužit k uchovávání energie, v mikroelektronice, v optoelektronice, cíleném doručování léčiv nebo katalýze.

„Naším výchozím materiálem pro přípravu grafenu je nejčastěji obyčejný grafit. Z obyčejného grafitu můžeme dospět ke grafenu například mechanickou exfoliací, kde lze použít dokonce obyčejný kuchyňský mixér, pokud máte vhodné sulfaktanty. Další z možných cest jsou chemické oxidace. Výchozí grafit je oxidován v prostředí silných kyselin a oxidačních činidel. Tím získáváme takzvaný oxid grafitu, který již velmi snadno rozbijeme na jeho jednotlivé monovrstvy, které je pak možné následně uspořádávat například obyčejnou filtrací do podoby flexibilních poměrně mechanicky stabilních membrán, které mají díky své chemické struktuře na rozdíl od grafenu vlastnosti elektricky izolační,“ vysvětluje Zdeněk Sofer.

Kromě grafitu existuje velmi široké spektrum dalších dvoudimenzionálních materiálů, jako je například černý fosfor termodynamicky nejstabilnější alotropická forma fosforu, která je ale také nejobtížněji připravitelná.

 

 

Zdroj: GA ČR


Zdeněk Sofer byl za svůj projekt oceněn v rámci letošních Cen předsedkyně Grantové agentury ČR 2019. Více o letošním předávání i dalších laureátech čtěte zde