Vytisknout tuto stránku

Pomocí nového typu mikroskopie lze nyní určit chemickou strukturu molekul

27. 5. 2018
Pomocí nového typu mikroskopie lze nyní určit chemickou strukturu molekul

Možnost zobrazit jednotlivé molekuly na povrchu pevných látek se sub molekulárním rozlišením zůstával po dlouhá léta nenaplněnou výzvou. Změnu přinesl až výzkum odborníků z Fyzikálního ústavu Akademie věd ČR pod vedením Pavla Jelínka, který na svůj vědecký výzkum využil finance z Grantové agentury České republiky.

Mikroskop atomárních sil s flexibilní částicí na konci hrotu

Technika řádkové mikroskopie umožňuje standardně dosáhnout atomárního rozlišení povrchů pevných látek. Avšak dosažení atomárního (chemického) rozlišení molekul nebylo možné, což výrazně limitovalo možnosti výzkumu molekul pomocí řádkových mikroskopů. 

Klíčem k dosažení sub molekulárního kontrastu je umístění právě jedné molekuly (např. oxidu uhelnatého) či atomu vzácných plynů na vrchol kovového hrotu. Právě přítomnost flexibilní částice na konci hrotu má za následek výrazné zesílení signálu, které umožňuje dosáhnout vysokého rozlišení. Tato nová technika zobrazení jednotlivých molekul otevírá zcela nové možnosti při studiu fyzikálních a chemických vlastností molekulárních nanostruktur. K vývoji této progresivní techniky zásadním způsobem přispěli čeští vědci z Fyzikálního ústavu s podporou grantových prostředků GAČR.

Na základě teorie rastrovací mikroskopie čeští vědci vyvinuli zcela nový přístup simulace obrázků rastrovacích mikroskopů s vysokým rozlišením. Tento model přispěl zásadním způsobem k porozumění těmto obrázkům a dalšímu rozvoji této progresivní techniky. Není tedy divu, že je tento program v současné době využíván vědeckými skupinami po celém světě.

Přímé měření elektrostatického pole

Dalším významným počinem bylo prokázaní možnosti zobrazit za pomoci této techniky rozložení elektrostatického pole jednotlivých molekul. Původní teorie mimo jiné poukázala na zásadní vliv elektrostatického pole na sub molekulární kontrast. Zahrnutí elektrostatické síly působící mezi hrotem a molekulou na povrchu významně posunulo nejen naše chápání mechanismu sub molekulárního rozlišení v rastrovacích mikroskopech, ale také možnosti zobrazení elektrostatického potenciálu jednotlivých molekul.

Elektrostatické pole kolem molekuly totiž z velké části určuje její chování, např. ovlivňuje preferovaná místa v molekule, kde dochází k chemickým reakcím s jinými sloučeninami. Toto pole má také zásadní význam při samoorganizačních procesech jednotlivých molekul vytvářejících tzv. supramolekuly (např. DNA), které mají velký význam v biologii a organické chemii. Možnost přímého měření elektrostatického pole proto otevírá nové možnosti v oblasti materiálového výzkumu, fyziky, chemie a nanotechnologie.

Elektronegativita jednotlivých atomů

Tým Pavla Jelínka se také zabýval možností měření elektronegativity jednotlivých atomů pomocí řádkovacích mikroskopů. Vědci ještě donedávna dokázali určit elektronegativitu, tedy schopnost daného atomu reagovat s okolím a vytvářet chemické vazby, pouze za pomoci technik, které pracovaly s velkým souborem atomů. Stanovit elektronegativitu jednotlivého atomu v závislosti na chemickém okolí dosud nebylo možné. Změnu přinesl až společný výzkum s japonskými badateli z Tokijské univerzity. 

„Nová metoda dokáže pomocí mikroskopie atomárních sil nejen stanovit elektronegativitu daného atomu na povrchu pevné látky, ale je schopna určit i její závislost na chemickém okolí měřeného atomu. To dříve nebylo možné. Tyto znalosti nyní můžeme využít k cílenému řízení chemických reakcí, například v katalýze nebo biochemii,“ uvedl Pavel Jelínek z Fyzikálního ústavu Akademie věd ČR. 

„Naše metoda umožňuje určit její změnu na základě chemického okolí atomu. Tím získáváme nový, komplexní pohled na elektronegativitu, a tudíž je třeba se trochu jinak dívat i na s ní související podstatu vazeb v chemických sloučeninách a na samotnou chemickou reaktivitu,“ vysvětlil Jelínek.

Zdroj: GA ČR