Petr Cígler a jeho spolupracovníci pracují na zdokonalení molekulárních přepravních systémů ribonukleové kyseliny (RNA) do buněk. Otázka, jak ji efektivně dopravit na určené místo v těle, aby tam cíleně umlčela špatně fungující gen, patří k největším výzvám prudce se rozvíjející genové medicíny. Nyní podnikli vědci z Ústavu organické chemie a biochemie AV ČR (ÚOCHB) ke splnění kýženého cíle další podstatný krok.
Petr Cígler, vedoucí vědecké skupiny Syntetická nanochemie, ÚOCHB AV ČR
Detailně popsali přípravu kompozitního nanomateriálu pro přepravu RNA, u něhož se soustředili hlavně na to, aby nebyl pro buňky toxický. Právě škodlivost látek přepravujících nukleové kyseliny totiž patří k závažným překážkám rozšíření genové terapie. Článek zveřejnil renomovaný vědecký časopis Advanced Functional Materials.
Petr Cígler s kolegy pracovali s předpokladem, že toxicitu způsobuje příliš velké zahuštění kladných nábojů podél řetězce přepravních polymerů, které vážou nukleové kyseliny. Systematicky proto kladný náboj ředili nenabitými monomery a zjistili, že mírné naředění nijak nezhoršuje schopnost systému nukleové kyseliny přepravovat. Ve své důkladné studii také popisují, za jakých okolností se dají připravit nové materiály využitelné v genové medicíně. Soustředili se přitom na to, v jakých podmínkách a v jakém poměru na sebe tyto látky nukleové kyseliny nejlépe vážou.
Buňka má několik možností, jak regulovat translaci (překlad) genů. Jedním ze způsobů je umlčet gen pomocí siRNA (small interfering RNA). Tím se zablokuje výroba vybraného proteinu, což se hodí zvlášť, pokud se jedná o zmutovaný nebo jinak defektní gen. Kromě toho je možné zasáhnout, jestliže vázne regulace translace. V těle se totiž v takovém případě tvoří proteinu příliš mnoho a to pak organismu škodí.
„Genová léčba je nejen vysoce účinná, ale taky nanejvýš adresná. Její největší výhodou je, že se soustředí na jednotlivé mutace nebo poruchy, aniž by minula cíl. Pomocí siRNA je možné zasáhnout třeba i jedno jediné zmutované písmenko genu,“ zmiňuje hlavní plusy genové terapie první autor studie Marek Kindermann. V současné době je celosvětově schváleno pět léčiv vyvinutých na bázi siRNA a na „čekací listině“ je jich kolem desítky.
Schéma různých strategií pro výrobu nanočástic potažených kladnými monomery
Terapeutickému využití siRNA brání fakt, že se jedná o nestabilní molekulu, která se v těle velmi rychle rozpadá. Odborníci na celém světě proto řeší problém, jak doručit siRNA na určené místo a umožnit jí, aby vykonala svou práci, tedy umlčením genu zastavila nebo omezila produkci určité nežádoucí bílkoviny. Právě tento úkol řešil také tým Petra Cíglera z ÚOCHB, spolu s kolegy z Mikrobiologického ústavu AV ČR v čele s vedoucí skupiny Nanomedicína, Veronikou Benson. Dosáhli přitom výborných výsledků.
„Přepravní systémy jsou designovány tak, aby splnily dva základní cíle. Jednak musí molekulu ochránit před rozpadem a pak ji také dopravit do buňky, aby se dostala až do cytosolu a tam mohla splnit svou misi jako léčivo,“ vysvětluje Petr Cígler a doplňuje: „V naší studii se podrobně zabýváme vlastnostmi přepravního systému. Jdeme až na úroveň strukturních detailů molekul, které interagují s nukleovou kyselinou. Popisujeme podmínky nezbytné k tomu, aby se siRNA úspěšně navázala na přepravní nanosystém, a tak se dostala až na místo v těle, kde má působit.”
Vědci z ÚOCHB prošlapávají cestu pro využití tzv. nevirových vektorů (bez využití virů). Celý přepravní systém i s nukleovou kyselinou proto umístili na povrch nanočástic diamantu. Jedná se o velmi stabilní nosné částice, které navíc poskytují zvláštní typ fluorescence. Díky tomu je možné sledovat, jak putují tkání a jak se chovají v buňkách. Určitou komplikací je, že tělo se nanodiamantů zbavuje jen těžko, a proto je tento způsob genové léčby vhodný hlavně pro léčení těžko hojitelných povrchových ran. Právě pro tyto druhy terapií, se zaměřením na zdravotní potíže diabetiků, známých jako bércové vředy, jsou určeny nové přepravní nanomateriály představené v této i dalších pracích Cíglerova týmu a jeho spolupracovníků.
Jejich poslední studie vznikla i díky projektu AMULET, který se zaměřuje na vývoj víceškálových nanomateriálů a spojuje osm partnerů pod vedením Ústavu fyzikální chemie J. Heyrovského. Amulet získal finanční podporu z operačního programu Jana A. Komenského, spravovaného MŠMT v kategorii Špičkový výzkum.
Foto: Tomáš Belloň
Zdroj: ÚOCHB AV ČR
- Autor článku: ne
- Zdroj: Ústav organické chemie a biochemie AV ČR