facebooktwittergoogleinstagram

Věda a výzkum

Portál Vědavýzkum.cz - Nezávislé informace o vědě a výzkumu

IOCB Tech, s.r.o. - hlavní partner portálu Vědavýzkum.cz

Hlavní partner portálu
facebooktwittergoogleinstagram

Dvourozměrný materiál může částečně nahradit křemík v elektronice

3. 4. 2022
Dvourozměrný materiál může částečně nahradit křemík v elektronice

Křemík najdeme v telefonech, počítačích a jakékoli další elektronice. Je totiž základním materiálem pro výrobu polovodičů, ze kterých se vyrábějí jejich komponenty. Tento po desetiletí používaný prvek však dosáhl svých limitů. Vědci z Ústavu fyzikální chemie J. Heyrovského AV ČR popsali vlastnosti jodidu chromitého, materiálu, který by mohl roli křemíku částečně zastoupit. Významnou studii publikoval odborný časopis Physical Review B.

Elektronika prochází neustálým procesem miniaturizace. Jenže její základní součástky nemohou být kvůli fyzikálním vlastnostem křemíku o mnoho menší. Naděje odborníků se upínají k pokročilým 2D materiálům.

Struktura dvourozměrných materiálů připomíná pravidelnou síť o tloušťce jediného atomu. Ačkoli se předpokládá, že existují stovky takových jednovrstvých materiálů, jejich vlastnosti nejsou dostatečně prozkoumané. První z nich, grafen, totiž vědci objevili teprve před patnácti lety. „Existuje jich celá rodina. Kromě grafenu, což je polokov, zahrnuje také izolanty, polovodiče, supravodiče, nebo magnety,“ popisuje jejich specifické vlastnosti Martin Kalbáč z Ústavu fyzikální chemie J. Heyrovského AV ČR.

Martin Kalbáč se s kolegy ve svém bádání zaměřili na jodid chromitý, materiál s chemickým vzorcem CrI3. Jeho strukturu tvoří jediná vrstva atomů chrómu a jódu s tloušťkou přibližně jednoho nanometru. Experimenty měly za cíl poodhalit, jak se bude materiál chovat v různých tlakových a teplotních podmínkách. „Krystal jsme podrobili vysokému tlaku, 20 gigapascalů a více, a změny magnetického stavu jsme sledovali spektrometrem,“ vysvětluje postup experimentu Haider Golam z téhož ústavu.

Nové a nečekané vlastnosti

Tým zjistil, že při tlaku do 22 gigapascalů se materiál chová jako takzvaný feromagnet. Prochází spontánní magnetizací, kdy se spiny všech jeho elektronů zorientují do jednoho směru. Naopak při tlaku vyšším, nad 30 gigapascalů, začne vykazovat vlastnosti antiferomanetu. Při něm se spiny uspořádají protichůdně a materiál nevykazuje téměř žádný vnější magnetismus.

Odborníky ale zajímaly vlastnosti krystalu poté, co ho vystavili nízké teplotě. Mezi zmíněnými 22–30 gigapascaly se jodid chromitý začal chovat jako takzvané spinové sklo. „Spiny elektronů zde mohou zaujmout mnoho různých uspořádání, nejsou periodicky uspořádané jako v běžných magnetech,“ doplňuje Jana Kalbáčová Vejpravová z Univerzity Karlovy. Název spinové sklo pramení z toho, že svým atomárním uspořádáním připomíná strukturu křemíku a kyslíku ve skle.

foto 2020 01 29 Martin Kalbac Ustav fyzikalni chemie  J Heyrovskeho 38Martin Kalbáč z Ústavu fyzikální chemie J. Heyrovského AV ČR

Rychlejší záznam a více dat

Tato vlastnost se obzvlášť hodí pro výrobu záznamových zařízení, například pamětí. „Magnetické ukládání dat je jedním z klasických způsobů, jak zachovávat informace,“ popisuje Martin Kalbáč a dodává, že magnetismus je v principu způsobený právě spinem elektronů v atomech.

Na magnetické disky se data ukládají tak, že se při záznamu vytvoří stabilní orientace jednoho pólu. Ta určuje binární informaci (1 nebo 0), kterou je možné později přečíst. „Očekává se, že velkou výhodou budoucí elektroniky vyrobené z materiálů jako je jodid chromitý bude odolnost vůči vnějšímu rušení a šumu.“

Podobné technologie jsou jednou z nadějných cest, jak zvýšit kapacitu pamětí a snížit jejich velikost. Protože má 2D materiál na šířku pouhý atom, součástka může mít více prostoru pro záznam. Nicméně podle Martina Kalbáče se elektronika své závislosti na křemíku touto cestou hned tak nezbaví. „Vhodná kombinace 2D materiálů však může poskytnout jedinečné možnosti pro návrh zařízení, která budou mít lepší vlastnosti než ta, která jsou postavená zcela na bázi křemíku.“

 

 

Zdroj: Akademie věd ČR

Autor: Jan Hanáček, Divize vnějších vztahů SSČ AV ČR

Foto:  Ústav fyzikální chemie J. Heyrovského AV ČR


Více jsme o dvourozměrných materiálech dozvíte na těchto odkazech: